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STRESS-WAVE INDUCED FRAGMENTATION IN ALUMINA-BASED CERAMICS

L. H. LEME LOURO* and M. A. MEYERS**

*Instituto Militar de Engenharia, Urca, Rio de Janeiro, Brazil

**University of California, San Diego, Department of Applied Mechanics and Engineering Sciences, R-011,

La Jolla, California, 92093-0411, United States of America

In a series of impact experiments in which the compressive stress, stress duration, and tensile reflection following com-
pression were varied, the effect of these parameters on fragmentation of alumina were quantitatively established. Initiation
sites for damage were identified by transmission electron microscopy. A model for fragmentation is developed, based on
nucleation, growth, and coalescence of cracks. This model leads to quantitative predictions of damage through the
parameter Sy (surface area per unit volume) that is a function of stress-wave and material parameters.

1. INTRODUCTION

Sapphire (monocrystalline alumina) exhibits Hugoniot
Elastic Limit (HEL) values up to 21 GPal. Polycrystalline
alumina also has a high HEL; it is approximately 10 GPa2.
Thus, the stress-wave response of alumina, at stress levels
on the order of the HEL, is of considerable fundamental
and applied importance. The recent studies by Yaziv3 and
Leme Louro% provide comprehensive reviews on the
subject. A question of great importance is: is there damage
under compression at stress levels below the HEL? As a
corollary to this question, can one predict quantitatively
impact damage in ceramics?

2. EXPERIMENTAL PROCEDURE

The experiments were conducted in a one-stage gas gun
at velocities between 200 and 1,000 m/s. The specimens
(disk-shaped, with dimensions shown in Fig. 1) were
encapsulated in either aluminum or copper containers.

Aluminum and copper have shock impedances that are .

lower and slightly higher than alumina, respectively. Thus,
aluminum and copper capsules are expected to generate
compression + tension and compression in the alumina
disks, respectively. SWAP-7 computations were
performed, confirming these stress sequences. Projectiles
were of the same material as capsules, as well as the
momentum traps. Matching of surfaces between alumina
and capsule was very carefully conducted, with individual
matching of pairs, in order to decrease, to the extent
possible, existing gaps. After impact, the capsules were
sectioned and the capsule-alumina sets were impregnated

with a dark resin in a vacuum oven in order to more clearly
delineate cracks. Crack observation was conducted at three
levels: macro, meso, and microscopic. Only macroscopic
measurements, based on the linear intercept method, are
reported here.

3. EXPERIMENTAL RESULTS

The most significant results are shown in Figures 2, 3,
and 4. These results indicate that:
a) Both compressive and tensile stresses generate cracks.
b) Sy (surface area per unit volume) increases with stress
(Fig. 2), stress duration (Fig. 3), and is higher for
compression + tension than for compression (Fig. 2).
¢) The isolated point in Fig. 4 ( |1 ) provides an important
insight into the process of fragmentation. In this
experiment the back of specimen (marked A in Fig. 1) was
filled with epoxy, a low impedance material. This epoxy
resulted in an enhancement of the tensile stress, for a same
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FIGURE 1

Schematic representation showing capsule design.
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FIGURE 3
Effect of pulse duration on fragmentation of alumina
(4.6 GPa compressive stress, aluminum capsule).

level of compressive stress (see Table in Fig. 4). Sy was
not proportionately increased; one would expect that this
data point would fall on the line that the other points
define, in Fig. 4, if fragmentation was purely a tensile phe-
nomenon. One concludes from the above that compressive
stresses precondition the material, by creating flaws that can

grow under tension.

4. ANALYSIS

A detailed analysis will be presented elsewhere3. The
main components of the formulation are given here. The
upper limit for crack velocity is the Rayleigh wave speed,
which is approached asymptotically as the stress intensity
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FIGURE 4
Effect of tensile stress on alumina fragmentation.

factor increases. An equation that represents well this
behavior is:

vc=vr[1-e°°(K%'K%c] o
where v is the crack velocity, vr the Rayleigh velocity, Kic
the static fracture toughness, KJ the fracture toughness at a
velocity v¢, and o a material parameter.

It was possible to obtain the parameter o and therefore
describe the dynamic crack propagation response for
alumina. The static fracture toughness was taken as 4 MPa
+m1/2 for high-purity alumina. Suresh® measured the
fracture toughness of alumina at a crack propagation
velocity of approximately 1.2 Km/s and found a value of
the order of 1.5 K¢, that corresponds to 6 MPa - ml/2,
Thus, the following equation describes the dynamics of
crack propagation in alumina:

ve=5.64[1-c12x102(K } - 16) @

The model proposed herein is based on the ideas of crack
nucleation, growth, and coalescence developed by the SRI-
International group.”-8 It is assumed that the material has
pre-existent flaws (i/oids, cracks, etc.) which are shown
schematically in Fig. 5(a). Under compression, some of
these flaws are activated (a stress and time-dependent
mechanism). When tension is subsequently applied,
growth of the initial cracks takes place at the velocity
dictated by Eq. 2, while subcritical flaws are activated in a
time-dependent mode. The initial population of flaws is Nj.
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When the compressive pulse passes, the pre-existent
defects are enlarged and new defects are created.
Therefore, the population of flaws changes from Nj to N; +
Ny as illustrated schematically in Figure 5(a) and (b). Nj is
considered the number of pre-existing flaws per unit
volume, and Ny’ represents the additional number of flaws
appearing as a result of the passage of the compressive
stress pulse. Hence, Ny' will be a direct function of o
(compressive stress level) and t (time of pulse duration).
One assumes: ,

Ny =Nj+to- Ny &

Ny is the nucleation rate of flaws under compression.

As illustrated in Figure 5 (c), the crack population is di-
vided into two groups, immediately after the transit of the
compressive pulse. The first group contains cracks having
at least the critical size or bigger, and the second one
involves all cracks smaller than a;. Beyond a¢ the cracks
grow with velocity vc. Below ac slower subcritical crack
growth takes place, and these subcritical cracks may
become critical within the time of pulse duration.

Then, one can write that:

Ny = Ns + N§,° @
where N$ and N$° are the number of flaws with critical
and subcritical size per unit volume, respectively. Figure
5(d) represents schematically crack intersections which give
rise to fragmentation. Figure 6 illustrates the formation of
unloaded regions. The model incorporates tiie concept of
unloaded fraction, since the available volume for crack
nucleation and growth decreases as the time increases. The
unloaded volume, Vy, can be obtained if one considers the
pre-existent critical cracks, each one generating a small

unloaded volume Vy, as well as the critical cracks nucleated
during the time of stress pulse application. So,

t
Vu=N$V0V;,+f Va (Vo - V) dNE
° ®

where V) is the total volume considered. Therefore, the
unloaded fraction, fy, is obtained as:

1-f,=exp[At+B]
where,

A=-V,N*and B=In(1-N¢V))
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FIGURE 5
Schematic representation showing: (a) ceramic
"as-received" with inherent flaws; (b) flaw increase due to
compression; (c) critical and subcritical flaws under tension;
(d) crack intersection resulting in fragmentation.

FIGURE 6
Kinetics of fragmentation and unloaded volume
surrounding cracks (schematic).

The increase in crack surface with time can be expressed as:

1 vrt
ds =4 [1“ (A" + Cee) eVrt} dt ©

B2 L A'+Ce%
where



468 . L.H. Leme Louro and M.A. Meyers

e0oi mag = A’

oao’n =B
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eVrio

The total surface area per unit volume is determined from
the progression of cracking with time. Referring to Figure
5, one can calculate the fragmentation as a function of time
by considering the following components:

a) Cracks that are critical at the onset of tension (t = 0):

Svl = Svac/

Sv, = 2§C[Ni+to't N, - N o
t

b) Increase in surface area of cracks that are critical at
time 0 and that continue to grow. This is equal to the
cracks per unit volume, Nf,, multiplied by the growth rate
of these cracks for an interval time 0 — t.
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where y=A'+CeVit

¢) The third component of the surface area per unit
volume are the cracks that become critical during the
interval 0 — t. A nucleation rate NSC of critical cracks is
defined and assumed to be constant. It is assumed that no
nucleation takes place in unloaded material.

: sC
k4| (1 - NG V)™ - 1)
12
o v, N> ©)
d) The fourth component of fragmentation is provided

by the growth of cracks that become critical during the
interval 0 — t. This involves growth of different cracks

Sy, =

for different length of time, since each critical crack has a
specific nucleation time.

sy o2B
SV4=41tV,N‘\g;ce .

1 “A' A/Vr,l'
B2 @Ay, {(Y AP > (Inyf

A-A"I{ InyP-2ylny+2 L[lz
+8- A y(nyP-2ymy+ y]+A,2y

Ly3(nyp

+(IHY)2-%yzlny+ly2}+L[3

4 A'Z

A' + Cx

A'+C (10)
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g7 Y 27"} l

The nucleation and growth rates have been corrected for the
unloaded volume. The total crack surface area per unit
volume is found by summation of the four contributions:

Sv =Sy, + Sy, + Sy, + Sy, (11)

One sees that Sy is a function of the stress-wave
parameters O, Ot, t, as well as material parameters Nj,
Ng, N¥, Ny, N, Kic, a. By independent
experiments it is possible to establish these parameters
which can, when inserted into Eq. 11, predict the
fragmentation parameter Sy. There are many simplifying
assumptions in the model, but it is thought that it
incorporates the principal events in plane stress wave
induced damage.

From Sy it is possible to calculate a mean fragment size
D, by means of the simple geometric relationship?:

_6
P=s, (12
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